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Abstract/Overview 17 

Ecdysteroids, typified by 20-hydroxyecdysone (20E), are essential hormones for the 18 

development, reproduction and physiology of insects and other arthropods. For over 19 

half a century, the vinegar fly Drosophila melanogaster has been used as a model of 20 

ecdysteroid biology, with many aspects of the biosynthesis and regulation of 21 

ecdysteroids understood at the molecular level, particularly with respect to their 22 

secretion from the prothoracic gland (PG) cells of the ring gland, widely considered the 23 

dominant biosynthetic tissue during development. Discrete pulses of 20E orchestrate 24 

transitions during the D. melanogaster life cycle, the sources of which are generally well 25 

understood, apart from the large 20E pulse at the onset of pharate adult development, 26 

which has received little recent attention. As the source of this pharate adult pulse 27 

(PAP) is a curious blind spot in Drosophila endocrinology, we evaluate published 28 

biochemical and genetic data as they pertain to three hypotheses for the source of PAP 29 

20E: the PG; an alternative biosynthetic tissue; or the recycling of stored 20E. Based on 30 

multiple lines of evidence, we contend the PAP cannot be derived from biosynthesis, 31 

with other data consistent with D. melanogaster being able to recycle ecdysteroids 32 

before and during metamorphosis. Further experimental work is required to test the 33 

ecdysteroid recycling hypothesis, which would establish fundamental knowledge of the 34 

function, regulation and evolution of metamorphic hormones in insects.  35 
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Introduction 36 

Steroids are ubiquitous signalling molecules in animals and plants. In insects and other 37 

arthropods, polyhydroxylated steroids known as ecdysteroids [1] act as hormones that 38 

control development, reproduction, physiology, immunity and behaviour [2–7]. 39 

Ecdysteroids, of which 20-hydroxyecdysone (20E) is generally considered the major 40 

hormone, mediate their effects through various receptors, including EcR/Usp, DopEcR 41 

and DHR38 [6,8,9], and many aspects of their biosynthesis and metabolism are now 42 

well understood. This is particularly true in the model insect Drosophila melanogaster, 43 

through which a number of critical discoveries about ecdysteroids have been made 44 

(reviewed in [2,10,11]). However, as we contend here, there are key developmental 45 

aspects of ecdysteroid biology that have not yet been settled in this species and 46 

deserve closer experimental scrutiny. 47 

 48 

Ecdysteroid biosynthesis 49 

In D. melanogaster, as with all insects, the biosynthesis of ecdysteroids begins with 50 

dietary sterols [12–15]. Typically, the sterol considered in the literature is cholesterol (a 51 

C27 sterol), which ultimately yields 20E, although alternate fungal and plant sterols such 52 

as ergosterol and campesterol (C28 sterols) can be used to produce functional 53 

hormones such as makisterone A [16–18]. The sterol backbone is transformed by the 54 

sequential action of enzymes, including an oxygenase (Neverland/Nvd [19,20]), a 55 

dehydrogenase (Shroud/Sro [21]) and multiple cytochrome P450s (Spook/Spo, 56 
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Spookier/Spok, Phantom/Phm, Disembodied/Dib, Shadow/Sad and Shade/Shd) that 57 

decorate it with up to four additional hydroxyl (-OH) groups [22–27] (Fig. 1A). Six of the 58 

genes encoding these enzymes were originally identified via nine ‘Halloween’ 59 

mutations, each of which give Drosophila embryos a characteristic ghostly pall 60 

(reviewed in [10,28]). Subsequent research has added more candidate enzymes to the 61 

biosynthesis pathway, including the P450 Cyp6u1 [29] and the glutathione S-62 

transferase Noppera-bo/Nobo [30–32], likely reflecting unresolved complexity in the 63 

pathway and its evolutionary diversification. (The P450 Cyp6t3 has previously been 64 

considered a Black Box candidate enzyme based on RNAi phenotypes [33], but recent 65 

work using null alleles strongly suggests it does not have a role in ecdysteroid 66 

biosynthesis [34].) Non-enzymatic proteins, such as regulators [35–37] and splicing 67 

factors [38], have also been identified as having specific roles in this pathway. While 68 

most ecdysteroid biosynthesis—in pre-adult life stages—is typically thought to be 69 

confined to the prothoracic gland (PG) cells of the ring gland (RG), where the pathway 70 

shuttles between enzymes located in the mitochondrial and endoplasmic reticulum, the 71 

final hydroxylation at C20 occurs in various tissues that express Shd [22]. 20-72 

hydroxylation marks the final ‘activation’ of ecdysone (E) into 20E (or their C28/C29 73 

equivalents), as the latter is generally considered the primary active ecdysteroid in 74 

Drosophila, although there is evidence other ecdysteroids have unique signalling 75 

functions [9,39–41]. In the rest of this paper, for simplicity, we will refer to all 20-76 

hydroxylated ecdysteroids as ‘20E’ and their immediate precursors as ‘E’. 77 

 78 
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Developmental functions of ecdysteroids 79 

Ecdysteroids are key drivers of development across insects, including Drosophila. They 80 

are first required for egg development, which progresses through 14 stages, defined by 81 

the behaviours and characteristics of both the germline and somatic cells that make up 82 

the egg chamber [42,43]. Without ecdysteroids, the developing egg cannot proceed to 83 

the yolk-uptake stages, because the hormones are required in a variety of cell types in 84 

the ovary to induce the progression of egg chambers through these early developmental 85 

stages [44–46]. During embryogenesis, both the extraembryonic membranes and the 86 

germ band itself require ecdysteroid signalling to undergo germ band retraction and 87 

complete head involution and mouth hook development [47]. Later in embryogenesis, 88 

ecdysteroids are necessary for larval cuticle deposition, as demonstrated by the 89 

Halloween mutant phenotypes [28]. 90 

 91 

Upon hatching, juvenile insects cycle through alternating growth phases followed by 92 

moulting to the next nymphal or larval instar. In Drosophila, the moult to the 2nd and 3rd 93 

larval instars are preceded by a large pulse of ecdysteroids, which induce the 94 

development of instar-specific morphologies (such as the spiracles and head skeleton), 95 

apolysis of the previous instar’s larval cuticle, and deposition of the new larval cuticle 96 

(reviewed in [48]). In the 3rd larval instar, there are a series of smaller pulses that 97 

prepare the larva for pupal and adult development [49]. The first pulse induces a 98 

transition known as critical weight, after which larvae can initiate metamorphosis even 99 

under adverse conditions like starvation [49,50]. The second small pulse initiates the 100 
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production of glue proteins in the salivary glands, which are used by the larvae to glue 101 

itself to the substrate at pupariation [49,51]. The third pulse induces wandering 102 

behaviour, where the larvae emerge from the food and search for a site to pupariate in 103 

preparation for metamorphosis [49,52].  104 

 105 

Following the three low-titre ecdysteroid pulses in the 3rd larval instar, a large ‘prepupal 106 

pulse’ causes the larvae to cease wandering, become immobile, evert their spiracles, 107 

and harden and tan their cuticle to form the puparium, initiating the prepupal stage 108 

[49,53,54]. Further, in response to the prepupal pulse, the imaginal discs evert and 109 

begin to deposit the pupal cuticle [55,56]. Approximately ten hours later, a relatively 110 

small ‘pupal pulse’ induces the pupal moult, limb extension, head eversion, and the 111 

degeneration of the PG cells [57,58].  112 

 113 

A final, sizable ‘pharate adult pulse’ (PAP) occurs during the transition from pupa to 114 

pharate adult, guiding the disintegration of larval structures while promoting the 115 

differentiation of adult tissues. In the developing legs, wings, and notum, the PAP 116 

induces the differentiation of sensory bristles, tarsal claws, and wing veins, and the 117 

invagination of leg joints [59,60]. It also commences neuronal pruning and cell death of 118 

the larval nervous system and the outgrowth and development of adult cells in the 119 

central nervous system [61,62]. Indeed, it is this final 20E pulse that finishes off the 120 

development of adult structures. 121 

 122 
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Known ecdysteroid sources 123 

It is important to note the distinctions between ecdysteroid ‘primary sources,’ ‘sites of 124 

conversion’ and ‘secondary sources,’ as defined by Delbecque et al. [63]: primary 125 

sources synthesise ecdysteroids (typically prohormones, such as E) from sterols de 126 

novo and secrete them into the haemolymph; sites of conversion convert prohormones 127 

into active hormones (such as 20E, through the action of Shd), which then move 128 

throughout the body; and secondary sources secrete ecdysteroids that have been 129 

derived from a primary source and/or site of conversion, inactivated, stored and then 130 

released (ie. recycled) upon reception of an induction signal (Fig. 1A). The reversible 131 

inactivation of ecdysteroids can occur through conjugation (usually at C2, C3 and C22) 132 

with phosphate, glucose or fatty acids [64–66], although reversible C3 oxidation can 133 

also occur [67,68]. Well-known ecdysteroid sources are typically primary in nature, such 134 

as the PG, although some secondary sources have been studied in detail, such as the 135 

maternal ecdysteroid-phosphate conjugates hydrolysed during embryogenesis in the 136 

silkworm Bombyx mori [64,69]. Throughout the rest of this paper, with respect to 137 

ecdysteroid sources, ‘primary’ will be synonymous with ‘biosynthetic,’ and ‘secondary’ 138 

will be synonymous with ‘recycling’. 139 

 140 

With a couple of exceptions, ecdysteroid sources throughout the D. melanogaster life 141 

cycle are generally well understood. The epidermis is both a primary source and site of 142 

conversion during mid-embryogenesis before the formation of the RG, inferred from 143 

epidermal expression of Halloween genes [22,24–27]. A maternally derived secondary 144 
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source—likely ecdysteroid-acyl conjugates—appears to be present in the yolk at the 145 

same time [70,71] and may play a role in some developmental processes in the embryo 146 

[47], although the lethal phenotypes of zygotic Halloween mutants demonstrate this 147 

maternal source is not sufficient for embryonic development, unlike in B. mori [72]. Once 148 

the RG has formed, the PG cells are the dominant primary source of ecdysteroids 149 

during late embryogenesis, as well as for the larval, prepupal and pupal pulses of 20E, 150 

with various tissues acting as sites of conversion after hatching [22,52,73–75]. The 151 

ovary acts as both a primary source and site of conversion in adult females [76–78], and 152 

the accessory gland may have the same functions in adult males [79], although this has 153 

yet to be definitively demonstrated.  154 

 155 

The source of pharate adult 20E is unknown 156 

Something that remains unclear is the source of the PAP, which to our knowledge has 157 

never been examined in detail. Strangely, the PAP 20E titre is frequently assumed—158 

explicitly or implicitly—to be produced by the PG followed by immediate conversion, 159 

particularly in recent reviews (eg. [80–84]), while older literature tends to be more critical 160 

of this assumption (eg. [48,85–87]). We contend that the source of the PAP in D. 161 

melanogaster is an unresolved question in insect endocrinology, and here we evaluate 162 

three competing hypothetical sources of the PAP: the PG; another biosynthetic tissue; 163 

or the recycling of 20E converted earlier in development (Fig. 1B). 164 

 165 
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The PG hypothesis 166 

As the PG is the source of ecdysteroids for the larval, prepupal and pupal pulses, it is 167 

reasonable to hypothesise it is also the source of the PAP. In this hypothesis, the PG 168 

produces a large amount of E after pupation, which is then converted to 20E by Shd in 169 

one or more peripheral tissues, in a similar manner to what occurs earlier in 170 

development. Two significant problems for this hypothesis are that the PG cells begin to 171 

degrade at the start of metamorphosis, such that most are undergoing cell death at the 172 

peak of the PAP [86], and that cultured brain-RG complexes from early pharate adult 173 

animals secrete E at rates far below what would be required to produce the PAP 174 

through subsequent 20-hydroxylation [85,86]. As has been previously noted [50,51,53], 175 

these data strongly suggest that the PG cannot be the dominant source of ecdysteroids 176 

during the PAP. 177 

 178 

The alternative primary source hypothesis 179 

If the PG is not the source of E during the PAP, an attractive alternative hypothesis is 180 

that a different tissue is responsible for synthesising E after pupation, with conversion to 181 

20E occurring either sequentially in the same tissue or in other tissues in the animal 182 

after secretion of E into the haemolymph. There is precedent for a non-PG primary 183 

source of ecdysteroids during embryogenesis in D. melanogaster (the epidermis; see 184 

above) and during metamorphosis in other insects, with the oenocytes and epidermis 185 

implicated in various species (reviewed in [63]), but an alternative primary source during 186 
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D. melanogaster metamorphosis has never—to our knowledge—been formally tested. 187 

Consistent with this hypothesis, there is a small amount of (non-shd) Halloween gene 188 

expression in non-PG larval tissues [88] and whole-body expression of most of these 189 

genes is roughly sustained past pupation [89] (although the latter is also consistent with 190 

continued ecdysteroid biosynthesis in the degenerating PG).  191 

 192 

A substantial problem with the alternative primary source hypothesis, however, is the 193 

very low level of shd expression [89] and ecdysone 20-monooxygenase activity [90] 194 

detected after pupation, data consistent with the high ratio of E to 20E in this period 195 

[16,54,91,92]. Notably, transgenic rescue experiments by Petryk et al. [22] do not 196 

demonstrate a requirement for Shd after pupation. Taken together, these data strongly 197 

suggest E is not being converted to 20E at the time of the PAP. If conversion to 20E 198 

does not take place after pupation, the presence or absence of an alternative primary 199 

source of ecdysteroids like E is inconsequential to the presence of 20E and suggests 200 

PAP 20E must be produced another way. 201 

 202 

There are also genetic data concerning the low-ecdysteroid mutants ecd1 and mldDTS-3 203 

that suggest the ecdysteroid biosynthetic pathway (in the PG or elsewhere) is 204 

dispensable for the PAP.  205 

 206 
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ecdysoneless (ecd) encodes a splicing factor required for the correct splicing of spok 207 

pre-mRNA (and also splicing of EcR mRNA and the correct expression of nvd, phm and 208 

dib) [38] and may also be required for intracellular transport of ecdysteroid 209 

intermediates in the PG [93]. ecd1 is a recessive, temperature-sensitive (TS), loss-of-210 

function allele of ecd that produces an ecdysteroid deficiency in larvae reared at a 211 

restrictive temperature (RT) of 29 ºC [94,95] due to a reduction in E secretion from the 212 

PG [96,97], although it also causes multiple other developmental defects [96–98], likely 213 

due to aberrant splicing and/or regulation of a variety of mRNA transcripts [38]. 214 

Importantly, ecd1 animals moved from a permissive temperature (PT) to an RT at 215 

pupariation have no qualitative differences in the shape, peak titre or relative timing of 216 

the PAP compared to wild-type animals at the RT or ecd1 animals at the PT [96,99], 217 

suggesting the aspects of E biosynthesis controlled by ecd are not required for the PAP.  218 

 219 

molting defective (mld) encodes a transcription factor required for the expression of nvd 220 

and spok in the PG [36,37] and loss-of-function mutant larvae have a low ecdysteroid 221 

titre and fail to molt [35]. mldDTS-3 is a dominant, TS, likely hypomorphic loss-of-function 222 

allele of mld (reported in [5,6,100] through a personal communication with P. Maroy and 223 

also claimed in FlyBase [101]), heterozygotes of which have temperature-inducible 224 

phenotypes very similar to those of mld null mutants [102–104]. Notably, mldDTS-3/+ 225 

larvae shifted from a PT of 22 ºC to an RT of 29 ºC after the middle of the 3rd larval 226 

instar have high viability to adulthood [102], suggesting mld’s function (ie. nvd and spok 227 

expression in the PG) is not required at least during metamorphosis, or earlier 228 
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depending on the time scale over which the mldDTS-3 allele affects ecdysteroid 229 

biosynthesis at 29 ºC or the sensitivity of each developmental stage to the mutation’s 230 

mld hypomorphism.  231 

 232 

Taken together, the data on ecd1 and mldDTS-3 cited above suggest the biosynthesis and 233 

secretion of E by the PG is not required for the PAP. However, some caveats could 234 

affect our interpretations. While use of ecd1 to explore ecdysteroid functions has been 235 

strongly discouraged due to pleiotropy [96–98], it undeniably disrupts E biosynthesis 236 

both directly and indirectly [38,93]. On the other hand, mldDTS-3 should be associated 237 

with less pleiotropy due to the highly specific function of mld [37]; indeed, a small 238 

proportion of mldDTS-3/+ 3rd instar larvae injected with a wild-type RG successfully eclose 239 

as adults at an RT [102], suggesting wild-type E secretion is sufficient to rescue 240 

developmental progression in at least some animals. However, both mutations were 241 

derived from EMS mutagenesis [94,104] and key studies did not use alternative alleles 242 

to complement or otherwise validate the observed phenotypes [96,99,102], meaning 243 

unknown secondary mutations (or balancer chromosome alleles for mldDTS-3/+ 244 

heterozygotes) could be responsible for some unexpected phenotypes observed, such 245 

as high pharate lethality in mldDTS-3/+ animals shifted to an RT mid-metamorphosis, the 246 

early temperature-insensitivity period of mldDTS-3/+ animals shifted from a PT to an RT, 247 

and the inability of 20E-feeding to rescue mldDTS-3/+ pupae to adulthood at an RT [102]. 248 

Additionally, the time scale over which induction of ecd or mld loss-of-function leads to a 249 

loss or reduction in the ecdysteroid biosynthetic capacity of the PG is unclear. Dissected 250 
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brain-RG complexes from ecd1 animals pre-incubated at an RT for 24 hr secrete 251 

approximately 50% the level of E compared to those pre-incubated for 0 hr [97], 252 

suggesting ecdysteroid secretion is not quickly abolished upon inactivation of ecd. Also, 253 

while Garen et al. [94] found ecd1 larvae shifted to an RT 20–24 hrs pre-pupariation 254 

have negligible levels of ecdysteroids at a time when control larvae produce the 255 

prepupal peak, a very similar experiment with a 24 hr pre-pupariation PT-to-RT shift by 256 

Belinski-Deutsch et al. [99] found no difference in the prepupal titre. To our knowledge, 257 

no published information exists on ecdysteroid titres in mldDTS-3 pharate adults. 258 

Regardless of these uncertainties around the ecd1 and mldDTS-3 alleles, given the lack of 259 

ecdysone 20-monooxygenase activity after pupation discussed above, we argue our 260 

interpretation of the data cited strongly point towards ecdysteroid biosynthesis not being 261 

the proximal source of the ecdysteroids in the PAP.  262 

 263 

The recycling hypothesis 264 

Our third hypothesis for the source of the PAP is that it is derived from recycled 265 

ecdysteroids: 20E synthesised earlier in development (from one or more of the 266 

embryonic, larval, prepupal or pupal peaks; Fig. 1B) is inactivated, stored, reactivated 267 

and then released from a secondary source after pupation. This hypothesis—previously 268 

proposed by Schwartz et al. [87] and Dai & Gilbert [86]—is consistent with the data cited 269 

above, as it does not rely on the presence of active Shd enzyme during the pupal–270 

pharate adult transition; likewise, it does not require E biosynthesis in the PG or any 271 

other alternative primary source. There is precedent for ecdysteroid recycling in 272 
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Drosophila and other insects: as previously mentioned, D. melanogaster embryos 273 

appear to contain maternal ecdysteroid-acyl conjugates [70,71], although there is only 274 

indirect evidence that they influence embryogenesis [47]; eggs from multiple species of 275 

Lepidoptera and Orthoptera contain maternal ecdysteroid-phosphate conjugates that 276 

are hydrolysed during embryogenesis (reviewed in [64,105]); male Anopheles gambiae 277 

mosquitoes gift an ecdysteroid-phosphate conjugate to females that is then 278 

deconjugated to produce an active hormone that controls female mating behaviour 279 

[106]; and in the dipteran Sarcophaga peregrina, conjugates of 20E are produced by 280 

larvae and then hydrolysed during pupal development [107–109], although it is unclear 281 

if this is the only source of 20E during this period. 282 

 283 

Published experimental data suggest a secondary source of the Drosophila PAP is 284 

highly plausible, but arguably stop short of supporting it conclusively. The high ratio of E 285 

to 20E found after pupation [16,54,91] (but see [110] for conflicting data) in the absence 286 

of Shd activity [90] is consistent with 20E being produced by the reactivation of inactive 287 

ecdysteroids (such as conjugates or other metabolites) while the degenerating PG 288 

produces a modest but significant amount of E that fails to be 20-hydroxylated. 289 

Additionally, according to Pak & Gilbert [92] (but see [16] for conflicting data, which may 290 

be due to ecdysteroid extraction and detection differences between studies), 70% of the 291 

ecdysteroid content of white prepupae is comprised of high- and low-polarity 292 

conjugates, the former of which at least can be hydrolysed in vitro to predominantly 20-293 
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hydroxyecdysone and makisterone A, raising the possibility these are being stored for 294 

use later in metamorphosis.  295 

 296 

Another line of evidence that suggests PAP 20E might come from recycling is the ability 297 

of exogenous 20E (supplemented in dietary media) to rescue a high proportion of dib 298 

and phm Halloween null mutants to adulthood [111]. As ecdysteroid secretion in 299 

discrete pulses is important for developmental transitions [73,112], reliance on 300 

exogenous 20E in biosynthetic mutants means internal metabolic mechanisms can 301 

likely control the ecdysteroid titre independently of intake. This is because: (1) it seems 302 

unlikely that larvae would produce discrete 20E pulses by modulating their dietary 303 

intake of supplemented media, as they are continuous feeders [113] and rely on 304 

consistent nutrient intake to rapidly grow to meet developmental checkpoints (reviewed 305 

in [114,115]); and (2) while active ecdysteroid titres can be reduced by catabolism and 306 

excretion [112,116], increasing titres in post-feeding stages (ie. prepupae, pupae and 307 

pharate adults) in the absence of biosynthesis likely relies on recycling, as suggested by 308 

Schwartz et al. [87]. If such a mechanism exists in chemically rescued biosynthetic 309 

mutants, it likely also exists in wild-type animals during developmental stages where 310 

20E biosynthesis is not active, such as—hypothetically—in late pupae/pharate adults. 311 

This is independently supported by the observation that feeding 20E to wild-type larvae 312 

increases 20E pulse titres during both feeding and post-feeding stages—including the 313 

PAP—compared to non-20E-fed larvae [87], which strongly suggests at least some of 314 

the PAP titre is derived from 20E circulating during feeding stages.  315 
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 316 

Overall, our interpretation of all the data discussed above is that a recycling origin for 317 

the PAP is the most plausible of the three hypotheses presented. However, there is a 318 

clear need for further experimentation, using modern genetic and analytical chemical 319 

methods, to formally test this hypothesis. If the recycling hypothesis is correct, many 320 

details would need to be determined, including the inactive ecdysteroid metabolites and 321 

enzymes involved, the tissue that acts as the secondary source, the mechanism by 322 

which 20E is secreted, and the signalling pathways that control the recycling system.  323 

 324 

Why is the source of the PAP important? 325 

As the PAP controls many aspects of adult tissue development, understanding how this 326 

pulse of ecdysteroids is produced and regulated is important for the use of D. 327 

melanogaster as an endocrinological model for other insects, especially as the 328 

molecular pathways that control the secretion of E from the PG (reviewed in [74,82]) 329 

and a hypothetical recycling system during metamorphosis could substantially differ. It 330 

is also tempting to speculate that regulation of the PAP could be a method through 331 

which Drosophila spp. and related insects adaptively specify the adult phenotype in 332 

relation to the juvenile environment. The timing of the PAP acts as a ‘switch’ for 333 

seasonal polyphenism in multiple butterfly species [117–121]: could a similar 334 

mechanism exist in the pest Drosophila suzukii, which develops into winter and summer 335 

adult morphs in response to environmental conditions [122]? Additionally, there is 336 

substantial evidence that the proximal cause of pupal diapause—a phenomenon that 337 
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does not occur in D. melanogaster but does in other Drosophila spp. [123] and many 338 

other dipterans [124–131]—is an absence of the PAP [132–136], suggesting the latter’s 339 

source is of fundamental importance to understand the regulation and evolution of 340 

diapause in Diptera. Finally, in contrast with D. melanogaster, there is persuasive 341 

evidence that the PAP is derived from biosynthesis in multiple lepidopteran species 342 

[137–140], suggesting the source of the PAP may be evolutionarily labile and could 343 

underpin some developmental differences between insect taxa.  344 

 345 

Conclusion 346 

In summary, while the source of 20E during the PAP is an unresolved question in 347 

Drosophila biology, we contend that multiple lines of existing data, synthesised here for 348 

the first time, support the hypothesis of a secondary source over a traditional primary 349 

source such as the PG. This 20E recycling hypothesis, first proposed in the 1980s and 350 

virtually neglected in recent years, deserves dedicated experimental testing, and the 351 

knowledge gained from such efforts will greatly enrich our current understanding of 352 

insect endocrinology.  353 
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 775 

Figure 1. Three hypotheses for the source of 20E during Drosophila pharate adult 776 

development. 777 

A) Schematic of ecdysteroid primary sources (green), sites of conversion (blue), hypothetical 778 

secondary sources (where the recycled hormone is 20E; pink) and ecdysteroid target tissues 779 

(grey). Only well-established biosynthetic enzymes are shown; the ‘Black Box’ is shown as 780 

multiple dashed arrows. Primary transcriptional effects of the ecd1 and mldDTS-3 mutations are 781 

shown in red. C, cholesterol; 7dC, 7-dehydrocholesterol; 2,22,25dE, 2,22,25-782 

deoxyecdysone/ketodiol; 2,22dE, 2,22-deoxyecdysone/ketotriol; 2dE, 2-deoxyecdysone; 20E-C; 783 

20E conjugate; CE, conjugating enzyme; DE, deconjugating enzyme.  784 
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B) Ecdysteroid sources during Drosophila development, with major transitions and 785 

developmental events labelled. Known and hypothetical sources (top), with the rough 20E titre 786 

from embryo to eclosion (adapted from [48,49]; middle), and semi-quantitative depictions of PG 787 

activity [85,86,89], shd expression [89], ecdysteroid 20-monooxygenase (E20MO) activity [90] 788 

and E:20E ratio [16,54,91,92] (bottom). MC, maternal conjugates. 789 


